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Objectives

• Solve a system of linear algebraic equations in tridiagonal form using

Thomas Algorithm
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• Let the system of linear algebraic equations be:

• A * X = B ; A – Matrix; X, B – Vectors

•
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• This is a tri-diagonal matrix with non zero numbers in the lower, middle and 
upper diagonal locations
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• The above set of equations can be efficiently solved using Thomas Algorithm

• The A matrix is re-arranged as

• Anew =
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• i.e., lower diagonal, middle, upper diagonal elements are arranged in the 
above form
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• Algorithm :

• For the rows from 2 to n ( n- no. of rows of the matrix A)

• d(i) = d(i) -
l(i)

d(i−1)
* u(i-1);

• b(i) = b(i) -
l(i)

d(i−1)
* b(i-1);

• l – lower diagonal elements ;

• d – main diagonal elements

• u – upper diagonal elements

• b – right hand side vector
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• Algorithm (Continued) :

• Solution: 

• x(n) = 
b(n)
d(n)

;

• for i varying from n-1 to 1

• x(i) = 
b(i) − u(i) ∗ x(i+1)

d(i)
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• Solution

• X  =  

−1.9668
−4.4252
−7.9899
−13.5521
−22.5024
−37.0783
−60.9237
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Summary

In this video, 

• We presented a procedure called Thomas Algorithm to solve a system of 
linear algebraic equations in tridiagonal form.

• The advantage of Thomas Algorithm is that the method is very efficient.

• We don’t computer resources to store all the zero values existing in the non-
tridiagonal locations.

• In the next video, we will show how to solve linear algebraic equations using 
iterative methods.
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